Formation Mechanism of Non-conductive PbSO₄ on IrO₂-Ta₂O₅/Ti Anodes in Copper Foil Production

Kenji KAWAGUCHI ^{a,*} and Masatsugu MORIMITSU ^b

^a Organization for Research Initiatives and Development, Doshisha University(1-3 Tatara-miyakodani, Kyo-tanabe, Kyoto 610-0394)

^b Department of Environmental Systems Science, Doshisha University(1-3 Tatara-miyakodani, Kyo-tanabe, Kyoto 610-0394)

This study elucidated electrochemical behaviors of an IrO₂-Ta₂O₅/Ti anode and pre-deposited PbO₂ layers of two types on IrO₂-Ta₂O₅/Ti anodes in H₂SO₄ solutions. The onset potential for the reduction of β -PbO₂ of a pre-deposited PbO₂ layer prepared from acidic solutions was more positive than the oxygen evolution potential on the IrO₂-Ta₂O₅/Ti anode. Formation of a non-conductive PbSO₄ film on IrO₂-Ta₂O₅/Ti anodes in copper foil production can be attributed to the formation of a local cell consisting of a PbO₂ cathode and an IrO₂-Ta₂O₅ anode during an open-circuit condition.

Keywords : IrO2-Ta2O3/Ti Anodes, Non-conductive PbSO4 Formation, Copper Foil Production, Local Cell

1. Introduction

An IrO₂-Ta₂O₅ coated Ti anode prepared by thermal decomposition has excellent catalytic properties for oxygen evolution in acidic solutions¹⁾⁻³³⁾ and its long lifetime has been proven for applications in electrogalvanizing and electrotinning of steel^{8),12)-18)}. The IrO₂-Ta₂O₅/Ti anode has been also applied for copper foil production³⁴⁾⁻³⁷⁾. Copper foil production is a process to produce a thin film of copper, and uses a rolling drum type cathode and a U-shape IrO₂-Ta₂O₅/Ti anode, in which the electrolyte is an acidic copper sulfate solution. Here, the cathodic reaction is copper deposition (1).

 $Cu^{2^+} + 2e^- \rightarrow Cu$ (1)

The current density in copper foil production is much lower than that of zinc or tin electroplating of steel so that a long lifetime could be achieved with a decrease in the oxygen evolution potential compared to commercially used Pb alloy electrodes. However, there are some cases where the oxygen evolution potential happens to increase without the consumption of the oxide coating, but with the deposition of PbO₂ on the coating. This is caused by unwanted side reactions of Pb(II) ions existing in the electrolyte. In copper foil production, the anodic reaction is mainly oxygen evolution(2), but the electrolyte also contains Pb(II) ions as an impurity, and Pb(II) ions are also oxidized to form PbO₂ on the IrO₂-Ta₂O₅/Ti anode (3). The deposited PbO₂ deteriorates the catalytic activity of the IrO₂-Ta₂O₅/Ti anode.

$2H_2O \rightarrow O_2 + 4H^+ + 4e^-$	(2)
$Pb^{2+} + 2H_2O \rightarrow PbO_2 + 4H^+ + 2e^-$	(3)

Moreover, the deposited PbO_2 is known to be partially reduced to $PbSO_4(4)$ on the IrO_2 -Ta₂O₅/Ti anode, for which the reduction mechanism has been unknown. $PbO_2 + SO_4^{2-} + 4H^+ + 2e^{-} \rightarrow PbSO_4 + 2H_2O \cdots (4)$

Since $PbSO_4$ is non-conductive, a continuous copper foil production is disturbed by removing $PbSO_4$ on the anode in actual uses. From the situation described above, this study aimed to resolve the formation mechanism of $PbSO_4$ on the IrO_2 - Ta_2O_5/Ti anode in copper foil production.

2. Experimental

Three kinds of samples were prepared. An IrO2-Ta2O5 coating (sample A) was prepared by thermal decomposition on a titanium substrate which had been degreased with acetone, etched in 10 % oxalic acid solutions at 90 °C for 60 min, washed with distilled water, and dried. A precursor solution was prepared by dissolving H₂IrCl₆·6H₂O and TaCl₅ into 1-butanol containing 6 vol% HCl, in which Ir : Ta ratio was 80 : 20 mol% and then which was coated on the titanium substrate. Thermal decomposition was carried out at 470 °C for 20 min for one coating. The composition and the thermal decomposition temperature are similar to those of commercially available IrO2-Ta2O5/Ti anodes. Total metal concentration of the precursor solution was 70 g dm⁻³, and the coating and heating processes were repeated five times. The detailed preparation procedure of the IrO₂-Ta₂O₅/Ti anode is described elsewhere $^{\scriptscriptstyle 38),39)}.$ Two types of pre-deposited PbO2 layers on IrO2-Ta₂O₅/Ti anodes were prepared. It is known that orthorhombic α -PbO₂ and tetragonal β -PbO₂ can be prepared by anodic electrolysis of a substrate in alkaline solutions and in acidic solutions, respectively^{40),41)}. Sample B was prepared by the pre-deposition of PbO₂ on the IrO_2 -Ta₂O₅/Ti anode(sample A). The pre-deposition was carried out by anodic electrolysis of the IrO2-Ta2O5/ Ti anode in 30 wt% Pb $(NO_3)_2$ (pH = 0.7) solutions at 40 mA cm⁻² for 5 min to have a β -PbO₂ layer. The other pre-deposited PbO₂ layer (sample C) was prepared by anodic electrolysis of the IrO₂-Ta₂O₅/Ti anode (sample A) in PbO sat. 4.0 mol dm⁻³ NaOH solutions at 1 mA cm⁻² for 15 min to get an α -phase. X-ray diffraction with Cu K α radiation (Bruker AXS Model D8 FOCUS) was performed to analyze the crystallographic structure of the

^{*} E-mail: kkawaguc@mail.doshisha.ac.jp

samples. The surface morphology of the samples was observed by SEM (ZEISS, Model SUPRA^M 55VP), using a normal SE detector and an incident electron beam of 15 keV acceleration voltage. Cyclic voltammetry of the samples was conducted using a conventional three-electrode cell with a KCl sat. Ag/AgCl reference electrode and a platinum plate counter electrode. The electrolytes used in this study were 0.5 mol dm⁻³ H₂SO₄ solutions. A potentio/galvanostat (EG&G, Model 263A) controlled by an electrochemical analysis software (EG&G, Model 270) was used.

3. Results and Discussion

Fig. 1 shows X-ray diffraction patterns of the samples. Three diffraction peaks at $2\theta = 28.0^{\circ}$, 34.7° , 54.0° are seen for sample A, which are assigned to the diffraction indexes 110, 101, and 211 of IrO₂, respectively. There are also three diffraction peaks of Ti from the substrate in **Fig. 1**A. It is noted that Ta₂O₅ prepared by thermal decomposition is amorphous as the thermal decomposition temperature is lower than at least 600 °C⁴²⁾. Therefore, sample A consisted of crystalline IrO₂ and amorphous Ta₂O₅, which is in good agreement with our previous works^{25,126),38),39),43),44)}. The diffraction peaks of α - and β -PbO₂ were confirmed on the diffraction pattern for sample B (**Fig. 1**B), which result proved that sample B comprised of β -PbO₂ with a small ratio of an α -phase on the IrO₂-Ta₂O₅/Ti anode.

Surface morphologies of two samples (sample A and B) are depicted in **Fig. 2**. Sample A showed a well-known feature of IrO_2 -Ta₂O₅ coatings^{3),4),10),20),33),38),39),44)}; there are aggregated IrO_2 particles, flat areas, and cracks. Cracks are at least a few micro meters in length, and the morphology is heterogeneous and a so-called "mud-cracked" surface. In **Fig. 2**B, the deposits of PbO₂ on the IrO_2 -Ta₂O₅/Ti anode can be seen, which result has no contradiction to the XRD result in **Fig. 1**B.

Cyclic voltammograms recorded with sample A (IrO₂-Ta₂O₅/Ti anode) and B (pre-deposited mixture of α - and β -PbO₂ on IrO₂-

Fig. 1 X-ray diffraction patterns of sample A (IrO₂-Ta₂O₅/Ti anode), sample B (pre-deposited PbO₂ on IrO₂-Ta₂O₅/Ti anode prepared from acidic solutions), and sample C (pre-deposited PbO₂ on IrO₂-Ta₂O₅/Ti anode prepared from alkaline solutions). • : IrO₂, \triangle : Ti, • : α -PbO₂, \bigcirc : β -PbO₂.

Ta₂O₅/Ti anode prepared from acidic solutions) in 0.5 mol dm⁻³ H₂SO₄ solutions are shown in **Fig. 3**(I). Sample A showed the increase in the current density starting at *ca.* 1.3 V(a), which corresponds to oxygen evolution. Sample B had a higher rest potential (b) than that of sample A, and two cathodic waves appeared

Fig. 2 Surface morphologies of sample A (IrO₂-Ta₂O₅/Ti anode) and sample B (pre-deposited mixture of α - and β -PbO₂ on IrO₂-Ta₂O₅/Ti anode prepared from acidic solutions).

Fig. 3 (I) Cyclic voltammograms of sample A (IrO₂-Ta₂O₅/Ti anode) and sample B (pre-deposited mixture of α - and β -PbO₂ on IrO₂-Ta₂O₅/Ti anode prepared from acidic solutions) and (II) Linear sweep voltammogram of sample C (pre-deposited α -PbO₂ on IrO₂-Ta₂O₅/Ti anode prepared from alkaline solutions) in 0.5 mol dm⁻³ H₂SO₄ solutions at 25 °C. Scan rate: 5 mV s⁻¹.

on the cathodic scan from the rest potential. The first cathodic wave(c) is the reduction of β -PbO₂, and the second one(d) is that of α -PbO₂, which result in the generation of PbSO₄ in H₂SO₄ solutions. We prepared an α -PbO₂ pre-deposited sample (sample C) by anodic electrolysis of the IrO₂-Ta₂O₅/Ti anode from alkaline solutions, and confirmed that the deposited layer was a single phase α -PbO₂ by X-ray diffraction as shown in Fig. 1C. A linear sweep voltammogram of the pre-deposited α -PbO₂ layer on the $IrO_2\text{-}Ta_2O_5/Ti$ anode (sample C) in 0.5 mol dm $^{-3}$ H_2SO_4 solutions is also shown in Fig. 3(II). A cathodic wave(e) was observed and the peak potential of the wave(e) proved that the second cathodic wave(d) in **Fig. 3**(I) corresponded to the reduction of α -PbO₂. The results in Fig. 3 suggest that if PbO_2 is deposited on the IrO2-Ta2O5/Ti anode in H2SO4 solutions, which is similar to the copper electroplating bath, and partially covers the anode surface, a local cell consisting of a PbO₂ cathode and an IrO₂-Ta₂O₅ anode can be made during an open circuit condition. Pb(II) ions in the electrolyte used in copper foil production is easily oxidized and produce PbO2 on the IrO2-Ta2O5/Ti anode, and no reduction of PbO2 occurs when the electrode is anodically charged, *i.e.*, the electrolysis is continued. However, if the electrolysis is temporally stopped, the local cell is instantaneously closed, resulting in the reduction of PbO2 to PbSO4 on the IrO2-Ta2O5/Ti anode.

4. Conclusion

An IrO₂-Ta₂O₅/Ti anode and two types of pre-deposited PbO₂ layers on IrO₂-Ta₂O₅/Ti anodes were prepared. The IrO₂-Ta₂O₅/ Ti anode consisted of crystalline IrO2 and amorphous Ta2O5, and the surface was heterogeneous and showed the "mud-cracked" morphology with aggregated IrO₂ particles, flat areas, and cracks. The pre-deposited PbO₂ layer on the IrO₂-Ta₂O₅/Ti anode prepared from acidic solutions was composed of a β -phase with a small ratio of an α -phase. The onset potential for the reduction of β -PbO₂ of the pre-deposited PbO₂ layer prepared from acidic solutions was more positive than the oxygen evolution potential on the IrO2-Ta2O5/Ti anode in H2SO4 solutions. The results suggest that if PbO₂ is deposited on the IrO₂-Ta₂O₅/Ti anode in H₂SO₄ solutions and partially covers the anode surface, a local cell comprised of a PbO2 cathode and an IrO2-Ta2O5 anode can be made during an open circuit condition, and if the electrolysis is temporally stopped, the local cell is instantaneously closed, resulting in the reduction of PbO2 to PbSO4 on the IrO2-Ta2O5/Ti anode.

(Received January 9, 2015 ; Accepted March 20, 2015)

References

- 1) J. Rolewicz, Ch. Comninellis, E. Plattner, and J. Hinden; *Electrochim. Acta*, **33**, 573 (1988).
- 2) G. P. Vercesi, J. Rolewicz, Ch. Comninellis, and J. Hinden; *Thermo-chim. Acta*, 176, 31(1991).
- 3)G. P. Vercesi, J.-Y. Salamin, and Ch. Comninellis; *Electrochim. Acta*, 36, 991(1991).
- 4) Ch. Comninellis and G. P. Vercesi; J. Appl. Electrochem., 21, 335 (1991).
- 5)G. N. Martelli, R. Ornelas, and G. Faita; *Electrochim. Acta*, **39**, 1551 (1994).
- 6) R. Mráz and J. Krýsa; J. Appl. Electrochem., 24, 1262 (1994).
- 7) J. Krýsa, L. Kule, R. Mráz, and I. Rousar; J. Appl. Electrochem., 26, 999(1996).
- 8) R. Otogawa, K. Soda, S. Yamauchi, Y. Nagatoishi, M. Morimitsu, and M. Matsunaga; *Denki Kagaku*, 65, 987 (1997).

9) F. Cardarelli, P. Taxil, A.Savall, Ch. Comninellis, G. Manoli, and O. Leclerc; J. Appl. Electrochem., 28, (1998).

Note

- 10) J. Krýsa, J. Maixner, R. Mráz, and I. Rousar; J. Appl. Electrochem., 28, 369 (1998).
- R. Otogawa, M. Morimitsu, and M. Matsunaga; *Electrochim. Acta*, 44, (1998).
- 12) R. Otogawa, K. Soda, H. Shimizu, T. Ikeda, M. Morimitsu, and M. Matsunaga; *Tetsu to Hagane*, 84, 785 (1998).
- 13) H. Meng, M. Morimitsu, M. Matsunaga, and R. Otogawa; Denki Kagaku, 66, 1148(1998).
- 14) R. Otogawa, H. Shimizu, T. Inoue, M. Morimitsu, and M. Matsunaga; *Proceedings of 9th Continuous Steel Strip Plating Symp.*, pp. 11-16, AESF (1999).
- 15) T. Kunihiro, M. Morimitsu, and M. Matsunaga; J. Appl. Electrochem., 30, 359 (2000).
- 16) R. Otogawa, M. Morimitsu, and M. Matsunaga; Nippon Kagaku Kaishi, 5, 299 (2000).
- 17) M. Morimitsu, H. Tamura, M. Matsunaga, and R. Otogawa; J. Appl. Electrochem., 30, 511 (2000).
- 18) M. Morimitsu, R. Otogawa, and M. Matsunaga; *Electrochim. Acta*, 46, 401 (2000).
- 19) J. M. Hu, H. M. Meng, J. Q. Zhang, and C.N. Cao; Corros. Sci., 44, 1655 (2002).
- 20) J. M. Hu, J. Q. Zhang, H. M. Meng, and C. N. Cao; J. Mater. Sci., 38, 705 (2003).
- 21) L. K. Xu and J. D. Scantlebury; Corros. Sci., 45, 2729 (2003).
- 22) J. M. Hu, J. Q. Zhang, and C. N. Cao; *Int. J. Hydrogen Energy*, **29**, 791 (2004).
- 23) L. M. Da Silva, D. V. Franco, L. A. De Faria, and J. F. C. Boodts; *Electrochim. Acta*, 49, 3977 (2004).
- 24) B. S. Li, A. Lin, and F. X. Gan; Trans. Nonferrous Met. Soc. China, 16, 1193 (2006).
- 25) M. Morimitsu and N. Oshiumi; Chem. Lett., 38, 822 (2009).
- 26) M. Morimitsu and K. Uno; Proceedings of Hydrometallurgy of Nickel and Cobalt 2009, pp. 571-580, Sudbury, Canada (2009).
- 27) L. Xu, Y. Xin, and J. Wang; Electrochim. Acta, 54, 1820 (2009).
- 28) Z. S. Msindo, V. Sibanda, and J. H. Potgieter; *J. Appl. Electrochem.*, 40, 691 (2010).
- 29) Y. Xin, L. Xu, J. Wang, and X. Li; *Rare Metal Mat. Eng.*, **39**(11), 1903 (2010).
- 30) J.-Y. Lee, D.-K. Kang, K.H. Lee, and D.Y. Chang; *Mater. Sci. Appl.*, 2, 237 (2011).
- 31) Z. Yan and H. Meng; Rare Metal Mat. Eng., 41(5), 772(2012).
- 32) G. E. Bakambo, J. K.-K. Lobo, O. M. Mvele, J. M. Lunguya, J.-F. Y. Senga, and P. M. Kimpende; *Int. J. Mater. Sci. Appl.*, **3**(1), 1(2014).
- 33) M. Morimitsu; Journal of MMIJ, **130**, 415 (2014).
- 34) T. Shimamune, Y. Nakajima, and K. Hirao; JP3124847 (1994).
- 35) M. Shimada, T. Shimamune, and Y. Nakajima; JP3124848(1994).
- 36) T. Shimamune and Y. Nakajima; JP3224329(1996).
- 37) K. L. Hardee; US Pat. 6527939 (2003).
- 38) K. Kawaguchi and M. Morimitsu; *Electrochemistry*, 83, 256 (2015).
- 39) K. Kawaguchi and M. Morimitsu; *Journal of MMIJ*, **131**, 129 (2015).
- 40) T.-C. Wen and M.-G. Wei; J. Electrochem. Soc., 137, 2700 (1990).
- 41) M. Taguchi, R. Iwahara, and T. Baba; Shigen-to-Sozai, 112, 475 (1996).
- 42) C. Murakami, K. Kawaguchi, M. Morimitsu, M. Matsunaga, and R. Otogawa; *The 199th Meeting of the Electrochemical Society, Abstr.* #940(2001).
- 43) K. Kawaguchi, G. M. Haarberg, and M. Morimitsu; *ECS Trans.*, **16** (39), 41(2009).
- 44) K. Kawaguchi, G. M. Haarberg, and M. Morimitsu; *Electrochemistry*, 77, 879 (2009).